Neste texto falaremos sobre mais um efeito que deixa evidente a característica quântica em sistemas físicos, ou melhor, que mostra explicitamente a chamada dualidade onda-partícula. Comentaremos a respeito do efeito Compton.
Antes de introduzirmos o efeito de um ponto de vista histórico, vale a pena ressaltarmos dois outros efeitos em que a dualidade onda-partícula começa a ficar evidente. Primeiro, a radiação de corpo negro (a ser comentada ainda neste blog) mostra que a radiação emitida por corpos é quantizada, emitida em quantidades discretas e não contínua, como se acreditava. E, em segundo, o efeito fotoelétrico deixa claro que uma explicação satisfatória para o experimento é apenas obtida se a energia transferida à matéria também é quantizada. Em termos históricos, a explicação do efeito fotoelétrico foi a primeira a sugerir que a energia era quantizada e, naquela época, muitos físicos importantes achavam que tal explicação era apenas provisória e que em um futuro não distante uma explicação segundo os preceitos tradicionais da física seria dada. Dentre tais físicos, destaca-se o próprio Compton.
Em 1923, Arthur Holly Compton, físico americano, investigou sistematicamente o espalhamento de raio-x monocromático por vários materiais. O que ele observou foi que em geral a frequência do raio-x espalhado era menor do que a frequência do raio-x original. Este resultado não era explicado pela teoria eletromagnética clássica, que afirma que a frequência depende apenas das características da onda incidente e, portanto, as frequências da onda incidente e espalhada deveriam ser as mesmas.
O experimento realizado por Compton está ilustrado na figura abaixo.
O que Comptou mediu no experimento foi o comprimento de onda do raio-x espalhado em função do ângulo θ ou, em outras palavras, a frequência da luz espalhada em função do ângulo de espalhamento.
Para resolver a discrepância entre os resultados experimentais e a teoria, Compton optou por considerar os raios-x como partículas, fótons, de frequência e energia bem definidas. Além disso, no experimento o raio-x incidia sobre um alvo de grafite. Sendo que a energia associada aos fótons é muito maior do que a energia cinética e de ligação dos elétrons na superfície do grafite, Compton considerou os elétrons como estando livres e em repouso, uma suposição muito razoável dadas as comparações das energias.
O esquema abaixo ilustra o raio-x incidente, o elétron e o raio-x espalhado.
Antes de introduzirmos o efeito de um ponto de vista histórico, vale a pena ressaltarmos dois outros efeitos em que a dualidade onda-partícula começa a ficar evidente. Primeiro, a radiação de corpo negro (a ser comentada ainda neste blog) mostra que a radiação emitida por corpos é quantizada, emitida em quantidades discretas e não contínua, como se acreditava. E, em segundo, o efeito fotoelétrico deixa claro que uma explicação satisfatória para o experimento é apenas obtida se a energia transferida à matéria também é quantizada. Em termos históricos, a explicação do efeito fotoelétrico foi a primeira a sugerir que a energia era quantizada e, naquela época, muitos físicos importantes achavam que tal explicação era apenas provisória e que em um futuro não distante uma explicação segundo os preceitos tradicionais da física seria dada. Dentre tais físicos, destaca-se o próprio Compton.
Em 1923, Arthur Holly Compton, físico americano, investigou sistematicamente o espalhamento de raio-x monocromático por vários materiais. O que ele observou foi que em geral a frequência do raio-x espalhado era menor do que a frequência do raio-x original. Este resultado não era explicado pela teoria eletromagnética clássica, que afirma que a frequência depende apenas das características da onda incidente e, portanto, as frequências da onda incidente e espalhada deveriam ser as mesmas.
O experimento realizado por Compton está ilustrado na figura abaixo.
Fonte: Site do IF/UFRGS.
Para resolver a discrepância entre os resultados experimentais e a teoria, Compton optou por considerar os raios-x como partículas, fótons, de frequência e energia bem definidas. Além disso, no experimento o raio-x incidia sobre um alvo de grafite. Sendo que a energia associada aos fótons é muito maior do que a energia cinética e de ligação dos elétrons na superfície do grafite, Compton considerou os elétrons como estando livres e em repouso, uma suposição muito razoável dadas as comparações das energias.
O esquema abaixo ilustra o raio-x incidente, o elétron e o raio-x espalhado.
Compton considerou os fótons como possuindo uma energia e um momento dados por
E = h ν0 , e p = h ν0/c, onde ν0 é a frequência associada aos fótons incidentes e c é a velocidade da luz no vácuo. Além disso, ele assumiu que tais fótons colidiam com um elétron de massa de repouso m0 em uma colisão perfeitamente elástica.
Então, levando-se em conta a conservação de energia e do momento linear, e considerando as correções relativísticas para as equações, Compton chegou na seguinte equação,
λs - λ0 = h/(m0 c) (1 - cos (θ))
Esta equação mostra que a diferença entre os comprimentos de onda espalhado e incidente depende do ângulo de espalhamento. O valor h/(m0 c), onde h é a constante de Planck, é conhecido como comprimento de onda de Compton, ou seja, existe de fato uma diferença entre os comprimentos de onda, ou frequência do raixo-x incidente e do raio-x espalhado, como observado experimentalmente. Esta diferença só é nula no caso particular em que o ângulo de espalhamento é 0, ou seja, a direção de espalhamento é exatamente a mesma do feixe incidente.
Com esta explicação totalmente satisfatória do experimento, encerra-se de uma vez por todas o questionamento sobre a natureza dual da matéria, ou seja, constata-se de fato a dualidade onda-partícula como uma característica intrínseca da matéria.
Abaixo apresentamos alguns links interessantes sobre o efeito Compton, inclusive de sua realização experimental nos dias recentes.
Nenhum comentário:
Postar um comentário