Atualizando a descrição do blog: Tive a intenção de criar este blog para divulgar conceitos, fatos históricos, curiosidades e outros temas sobre a grande ciência física. Existem muitos outros blogs sobre o assunto, mas a minha intenção principal é tentar escrever sobre assuntos de física vistos na graduação ou de pesquisa física para o público geral. Minhas ideias sobre temas para as colunas surgem de textos e artigos que vou lendo ao longo do meu trabalho acadêmico. Discussões são sempre bem vindas!
Abraço a todos!

sexta-feira, 8 de março de 2013

Alguns conceitos sobre o zero absoluto

Recentemente muito se tem discutido a respeito da temperatura absoluta, particularmente sobre o zero absoluto e sobre a possibilidade, verificada experimentalmente no final do ano passado, de chegarmos a temperaturas abaixo deste zero absoluto. Por isso resolvi escrever esta coluna, sem nenhuma intenção direta de explicar o experimento realizado para atingir tal temperatura, mas sim tentar clarear alguns conceitos que podem ajudar a entender um pouco mais sobre o que é o zero absoluto.

Lord Kelvin, do qual originou-se o nome da 
escala absoluta de temperatura.

Enfim, temos que definir primeiro o que é temperatura. Temperatura é definida como o grau de agitação ou vibração média das moléculas constituintes de um certo sistema, por isso, temperatura está diretamente associada à energia térmica média de vibração das moléculas do sistema em questão. Quando aumentamos a temperatura, significa que injetamos energia no sistema, e por outro lado, quando diminuímos a temperatura, quer dizer que retiramos energia do referido sistema, através de uma variedade de processos possíveis. Se então supusermos um sistema composto por uma pequenas quantidade de átomos e formos retirando energia deste sistema, é natural (levando em conta apenas nosso senso comum) imaginarmos  que quando toda energia tiver sido absorvida do sistema, os átomos atingirão um estado de energia nula, em que não haverá movimento algum destes átomos. Mas então, seria impossível falarmos em temperatura absoluta negativa? Ou se fosse, qual então seu significado?

Nesta escala de estudo dos constituintes da matéria e de suas leis, devemos nos atentar de que a mecânica clássica não é a teoria que dita as regras, mas sim a mecânica quântica e suas implicações. Dentro do conjunto de princípios e normas das mecânica quântica, existe um chamado princípio da incerteza de Heisenberg. Tal princípio estabelece que é impossível obter um total conhecimento da posição e o momento (velocidade) de uma partícula ao mesmo tempo. Em outras palavras, se você souber exatamente onde uma partícula se encontra, não pode saber nada sobre sua velocidade, e vice-versa. Onde isso se relaciona com a diminuição da temperatura de um sistema? Pois bem, quando falamos no zero absoluto, falamos também em cessar completamente a velocidade da partícula (átomo) e, portanto, conhecermos exatamente sua posição. Não é difícil de ver que este estado do sistema vai totalmente em oposição do que diz o princípio de incerteza de Heisenberg. Neste sentido, atingir o zero absoluto torna-se impossível, teoricamente e não alcançado experimentalmente, pois precisaríamos saber exatamente onde a partícula se encontra.

Então, que história é essa de ultrapassar a temperatura do zero absoluto?

Se temos carro com velocidade de 10m/s e queremos que este atinja 40m/s, teremos necessariamente de passar por todas as velocidades intermediárias, 11, 12, 13, 14m/s, etc.  Com a temperatura, podemos imaginar algo análogo, ou seja, para resfriarmos um sistema de 10 Kelvin para 5 Kelvin (K), deveremos passar por todas as temperaturas intermediárias. Mas algo diferente ocorre quando vamos de 1K para -1K, por exemplo, pois neste caso necessitamos passar pelo 0K, ou seja, por uma temperatura que é impossível de ser alcançada de acordo com as teorias vigentes.

É aqui que está uma questão conceitual importante para entendermos a essência do experimento realizado no final do ano passado. Não iremos aqui entrar em detalhes de como o experimento foi realizado, tecnicamente falando, mesmo porque não tenho conhecimento sobre isso, mas o fato é que, sendo o zero absoluto uma temperatura crítica (temos um problema matemático e teórico neste valor), ele não foi atingido quando se obteve temperaturas abaixo do zero absoluto, e sim contornado. Em outras palavras, a temperatura do sistema foi imediatamente de um pequeno valor positivo para um pequeno valor negativo. A mudança não foi progressiva, não foi linear, como no exemplo do carro acima.

Portanto, o zero absoluto continua não alcançado, mesmo que temperaturas negativas absolutas tenham sido atingidas. Parece estranho para o senso comum, mas é fato. Para quem já passou pela graduação em algum curso de exatas e viu a disciplina sobre variáveis complexas, deve provavelmente ter se lembrado de quando se tem um ponto singular e devemos contorná-lo por algum procedimento matemático.

Abaixo uma bem pequena bibliografia que julgo interessante para ler mais sobre o assunto:

- Na revista Scientific American de Março de 2013, artigo: Os efeitos da bizarra temperatura negativa, de Cláudio Nassif.


Abraços!

J. F.

segunda-feira, 4 de fevereiro de 2013

O pêndulo de Foucault

Muitas aplicações de mecânica clássica estão presentes em qualquer livro texto de graduação ou mesmo às vezes em livros de física do ensino médio. Entre elas, estão certamente: o plano inclinado, o oscilador harmônico e o pêndulo. Estes exemplos são muito interessantes pois podemos estudar as três leis de Newton, e a atuação de cada tipo de força, dentre elas a força peso. Neste breve texto pretendo falar um pouco sobre o pêndulo, um em particular, chamado pêndulo de Foucault. O fato deste experimento ser de importância para a física é que com ele podemos verificar o movimento de rotação da Terra sem necessitarmos fazer observações do céu.

Primeiramente, vamos ver rapidamente as propriedades de um pêndulo simples. Lembro aqui que muito material sobre o assunto "pêndulo" em física pode ser encontrado em qualquer livro texto ou mesmo na internet. Um pêndulo simples em resumo não é nada além de um sistema mecânico no qual temos energia cinética sendo convertida em energia potencial e vice-versa. Para pequenos ângulos de oscilação, desprezando a resistência do ar ao movimento, a frequência de oscilação é ω = (g/l)1/2, e o período de oscilação é dado por 2π(l/g)1/2, onde g é aceleração da gravidade na Terra e l é o comprimento do fio do ponto de suspensão até a massa suspensa. Note que a massa do corpo atrelado ao fio não aparece nas equações acima.

Agora, vamos ver as peculiaridades do pêndulo de Foucault. A principal característica deste pêndulo está no comprimento de seu fio, na verdade uma haste. Como podemos ver na última equação, quanto maior for a haste do pêndulo, maior será seu período. Outra característica fundamental é que diferentemente do pêndulo simples, que oscila apenas numa única direção, o pêndulo de Foucault é livre para oscilar em todo o plano x-y, pois em seu ponto de suspensão no teto há um mecanismo que minimiza ao máximo o atrito e que portanto permite este movimento.

Então, qual foi o experimento realizado pelo físico francês Jean Foucault? O que este físico fez em 1851 foi suspender uma esfera de 30 Kg por um fio de 67 metros de comprimento, oscilando-a como um pêndulo. Além disso, durante o movimento areia ia se escorrendo da esfera, com a intenção de marcar no chão a trajetória do pêndulo. O que se verificou foi que o rastro deixado pela areia não se sobrepunha um ao outro, mas sim existia um espaçamento entre um e outro a cada período do pêndulo completado, como está exageradamente ilustrado na figura abaixo.


Se estivéssemos em um sistema totalmente inercial, então o movimento de tal pêndulo seria em uma linha reta, ou seja, os traços de areia iriam se sobrepor, sem exceção, a menos que o movimento inicial do pêndulo começasse já com uma força que o fizesse movimentar pelo plano x-y. Entretanto, não é o que ocorre, devido ao movimento de rotação da Terra. Se estivéssemos em um referencial inercial fora da Terra, seria possível visualizar o pêndulo oscilando sempre em linha reta e a Terra rotacionando em seu movimento incessante. Porém como estamos atrelados à superfície da Terra vemos o pêndulo girar em torno de seu de fixação.

Sem recorrer a qualquer tipo de demonstração matemática, o que pode ser encontrado em livros textos de física, o tempo para uma rotação completa do plano de oscilação, considerando uma latitude λ, é dado por T(λ) = 24/sen λ, onde o tempo aqui é dado em horas. Assim, é fácil notar que os únicos lugares em que o tempo de rotação completa do plano de oscilação do pêndulo de Foucault é igual a 24 horas são nos pólos norte e sul, onde temoλ = 90 graus. Vale notar também que, assim como quando rosqueamos uma porca em um parafuso, visto por cima e visto por baixo deste, o movimento que devemos realizar são opostos, o movimento do pêndulo de Foucault ocorre no sentido horário no hemisfério norte e no sentido anti-horário no hemisfério sul. Abaixo está uma esboço da Terra e de sua latitude, apenas a nível de curiosidade.

Logo abaixo também podemos ver um vídeo onde se mostra o funcionamento de um pêndulo de Foucault, onde a constatação da rotação da Terra por traços de areia foi substituída por pequenos pinos que são derrubados ao logo do movimento. Vale a pena dar uma olhada.



Bom, é isso. Espero ter ajudado em passar a ideia desse importante experimento na história da física e um pouco sobre seu funcionamento. Qualquer discussão é bem vinda. Abraço a todos!

J. F. 

quarta-feira, 26 de dezembro de 2012

O Princípio Cosmológico




Nos últimos cem anos, a cosmologia obteve diversos e significativos avanços em direção a tentar compreender melhor a evolução do nosso universo. Neste contexto, os avanços teóricos foram muito maiores do que os avanços experimentais. Um dos motivos é que, para estudar os momentos iniciais de evolução do universo, uma quantidade enorme de energia é necessária para reproduzir os cenários imediatamente após o Big Bang. A quantidade de energia disponível hoje para ser usada em um acelerador de partículas é imensamente menor do que a necessária. Deste modo, tendo a relatividade geral provado sua importância como ferramenta a ser usada, é óbvio que a física teórica pôde avançar muito além dos experimentos. Entretanto, muitos modelos físicos ainda precisam da validação ou reprovação, e isso apenas se faz com métodos experimentais.

Por causa da imensidão do nosso universo observável, é natural que, em cosmologia, se façam alguma hipóteses e aproximações. Assim, uma hipótese importante é de que, em grandes escalas de distância, nosso universo universo é isotrópico e homogêneo. Por isotrópico entende-se que as características do universo são independentes da direção de observação escolhida. Já homogêneo quer dizer que a distribuição de matéria se dá, em grande escalas, de maneira aproximadamente uniforme. A principal aproximação é que de a relatividade geral, provada com sucesso em escalas astrofísicas, seja também válida em escalas cosmológicas, tanto de espaço quanto de tempo. Aquela hipótese e a aproximação formam o chamado Princípio Cosmológico, algo muito importante para a construção do modelo cosmológico padrão atual.

Como já dito, experimentos para compreender nosso universo primordial, como é chamado o universo imediatamente após o Big Bang, são atualmente incapazes de serem realizados. Entretanto, medidas indiretas (como a radiação cósmica de fundo) são possíveis de serem feitas a fim de verificar a validade de uma certa teoria ou parte dela. Essas medidas são de grande importância para a cosmologia atual. De fato, atualmente muitos sistemas de detecção direta de sinais chamados "relíquias", do universo primordial, não são sensíveis o suficiente para captar dados, sendo que a maioria dos dados obtidos dessa época do universo segue de medidas indiretas.

Abraço a todos!

quarta-feira, 19 de dezembro de 2012

Perspectivas

Matéria escura, energia escura e inflação...as duas primeiras coisas, de tanto não sabermos do que se trata, agora os físicos estão questionando sobre sua existência, argumentando supostas alterações em leis ditas fundamentais na física; Quanto a terceira, observações tem mostrado que seria muito mais provável um universo como o nosso surgir sem um período inflacionário do que através de um. É provável que venham muitas mudanças pela frente!

Abraço a todos!

terça-feira, 18 de dezembro de 2012

Entropia e estados possíveis

Dentre as diversas áreas da física, certamente a termodinâmica é uma das que menos sofreu alterações nos últimos tempos. Claro que alguns tópicos da termodinâmica sofreram alterações pontuais para serem aplicados em problemas também específicos, mas em termos gerais, os conceitos básicos da termodinâmica mantiveram-se inalterados perante mudanças radicais causadas pela mecânica quântica e a teoria da relatividade. Essa característica se deve principalmente pelo fato de que a termodinâmica foi desenvolvida com base em dados puramente empíricos. 
A primeira lei da termodinâmica afirma que a energia de um sistema físico isolado se conserva. Por sistema físico isolado entendemos qualquer sistema que não interage trocando energia com o resto do meio ambiente. Já a segunda lei diz que a Entropia de um sistema isolado não se altera se ele realiza um processo reversível, e aumenta se ele realiza um processo irreversível. Em termos gerais, um processo reversível é qualquer processo no qual através de pequenas alterações no sistema físico, é possível voltar ao estado inicial. Já um processo irreversível não permite isso. O que seria então a entropia? Uma maneira simples de entender a entropia sem entrar em equações e fórmulas e dizer que a entropia mede nada mais que o grau de desordem de um sistema físico isolado. Se o sistema possui baixa entropia, então ele está em um nível elevado de organização; já se sua entropia é alta, então há muita desordem entre os constituintes deste sistema físico.


Vamos dar um exemplo. Suponha que nosso sistema físico seja uma xícara com café, colocada em cima de uma mesa. Temos a energia potencial gravitacional, devido ao fato da xícara estar a uma altura x do chão, temos a energia de ligação das moléculas na xícara e também no café. Está claro que todo conteúdo do café está contido na xícara, e por isso podemos afirmar que existe uma quantidade A de configurações possíveis que irá resultar no nosso sistema físico xícara+café sobre a mesa. Se agora, derrubarmos a xícara no chão, veremos que ela se quebra em diversos pedaços, além de o café agora se espalhar por boa parte do chão. A energia potencial gravitacional foi transformada em energia cinética; entretanto, uma vez que a quantidade de café não mais está limitada ao volume da xícara, logo notamos que existe uma quantidade B de configurações no qual o café pode se espalhar pelo chão. Além disso, o número de configurações possíveis no qual as moléculas da xícara podem se arranjar agora é muito maior do que quando ela estava inteira. Deste modo, vemos rapidamente que B é muito maior que A. Dizemos que a entropia do sistema xícara+café é agora muito maior. Logo, o valor da entropia é proporcional ao número de estados possíveis do respectivo sistema físico.
Para finalizar, vamos dar outro exemplo, que servirá para uma próxima discussão tentando relacionar entropia e o fluxo de tempo. O modelo padrão cosmológico assume que num dado momento, toda energia do universo estava concentrada em um único ponto e que toda essa energia começou a se expandir, formando nosso universo atual. Portanto, existem muito mais maneiras possíveis de se arranjar nosso universo hoje do que no momento inicial do Big Bang (quando toda energia estava fortemente compactada), segundo a lógica do exemplo anterior. Logo, hoje a entropia do universo como um todo é muito maior do que antes, e de acordo com os dados observacionais, continua a aumentar.
Espero ter introduzido o conceito de entropia como a quantidade de estados possíveis em que um sistema físico pode para uma energia fixa. Tentaremos a seguir conectar isso ao conceito de fluxo de tempo.

quarta-feira, 14 de novembro de 2012

O caráter não determinístico na mecânica quântica


Neste texto, tenho como intenção dar dois exemplos bem simples de dois sistemas físicos e com isso evidenciar uma clara diferença entre a física clássica e a física quântica, a perda do caráter determinista desta segunda. Sem entrar em detalhes matemáticos e técnicos da teoria quântica, espero poder contribuir de alguma forma para pessoas não necessariamente ligadas à física.
            Para isso, vamos considerar uma moeda, e ignorar todas suas propriedades de translação e posição, nos interessando somente se ela está em “cara” ou “coroa”. Chamaremos cara e coroa de estados da moeda. Na física clássica, que estamos acostumados no nosso dia-a-dia, a moeda pode estar ou no estado cara ou no estado coroa antes de olharmos ela, e poderíamos formular uma determinada teoria física clássica que nos dissesse quando esta moeda alterasse seu estado de cara para coroa, ou vice versa. Esta teoria é chamada uma teoria determinística, pois sempre é possível, antes ou após realizarmos uma medida sobre a moeda, conhecer o estado da partícula.
Já para uma teoria quântica, o estado da partícula não é especificado dizendo somente cara ou coroa, mas ele é dado por um vetor, chamado vetor de estado. Este vetor de estado está contido em um espaço bidimensional, sendo uma combinação linear dos dois estados possíveis, cara e coroa. O estado da moeda é representado agora pela seta na figura abaixo. Se a seta está totalmente na vertical, temos então que a moeda está no estado coroa. Já se a seta estiver totalmente na horizontal, teremos a moeda no estado cara. Estas duas possibilidades coincidem com o caso clássico apresentado acima. Porém agora temos uma nova possibilidade (na verdade diversas delas) que não é encontrada na teoria clássica determinística. Temos também a possibilidade de uma combinação de estados e poderemos representar um estado composto pela equação hipotética estado = C “cara” + D “coroa”. E o que isso significa? As letras C e D são chamadas amplitudes de probabilidade. Na verdade, as probabilidades do estado da moeda ser cara ou coroa são |C|2 e |D|2 respectivamente.


 Se lembrarmos do teorema de Pitágoras veremos rapidamente que |C|2 + |D|2 = 1. Essa regra de soma de probabilidades é geral em mecânica quântica e tem significado importante em teorias físicas modernas. Outro fato importante é que a interpretação tradicional da mecânica quântica diz que antes de olharmos o estado da moeda, ele se encontra em um estado composto das duas possibilidades. Após olharmos a moeda, iremos somente ver cara ou coroa.
Aqui, discutimos um caso ilustrativo, não real, e vimos uma diferença importante entre mecânica clássica e mecânica quântica, a perda do caráter determinístico na segunda. Tal caráter se aplica muito bem a partículas e outros casos importantes na física quântica.  Uma discussão expandida deste assunto pode ser encontrada no livro Elementary Particles and the Laws of Physics, de Richard P. Feynman e Steven Weinberg, segundo capítulo.

domingo, 21 de outubro de 2012

O destino da física teórica

Qual será o futuro da física teórica? Seria grande audácia minha tentar dar uma resposta a esta pergunta, mas irei aqui basicamente escrever uma coluna baseada totalmente na palestra do Professor Andrei Mikhailov, do Instituto de Física Teórica da UNESP. Nesta palestra o professor discutiu sobre três futuros para a física teórica, em sua opinião. Tentarei expor aqui suas ideias, pois achei uma palestra muito interessante para a física geral.

Qual a relação entre teoria e experimento na física ao longo da história? Antigamente, em especial antes da teoria da relatividade geral, a experimentação era o que guiava os físicos. A teoria e os modelos propostos eram basicamente formas de explicar fenômenos da natureza ou experimentos realizados por nós. Muitos historiadores da física tem a teoria da relatividade geral como a primeira teoria que veio antes da experimentação. De fato, a relatividade geral fez algumas previsões importantes, como a deflexão de um feixe de luz ao passar próximo de um objeto massivo, a correção na órbita de mercúrio, entre outros. Os experimentos  para comprovar tais previsões foram então realizados algum tempo depois. Desde então, em geral, teoria e experimentação inverteram seus papéis, sendo que a teoria assumiu o papel de prever fenômenos e aos experimentos comprovar ou não modelos e teorias físicas.


Acontece que, como temos visto, desde que os primeiros aceleradores de partículas foram desenvolvidos, os experimentos em física de partículas ficaram cada vez mais caros, chegando ao seu ápice com a construção do LCH, o grande colisor de hádrons, que teve um custo estimado em $ 8 bilhões de dólares. Paralelamente a isso, teorias físicas ditas fundamentais, aquelas das quais se estuda, por exemplo, a estrutura fundamental da matéria, a origem do universo, ou também as condições físicas imediatamente após o surgimento do universo, evoluíram a um nível muito elevado, indo para um patamar que não foi possível a física experimental acompanhar. Tendo isso em mente e aceitando o fato de que devido a várias influências econômicas, ficará cada vez mais difícil a construção de laboratórios caríssimos (muito mais caro do que o LHC), o professor Andrei sugeriu que existem três destinos à física teórica, Irei citá-los aqui, em uma simples narrativa, com o que me recordo.

*Filosofia: Segundo o que o professor Andrei disse, a física teórica está ficando  cada vez mais tão distante da física experimental, ou seja, está tão difícil comprovar ou derrubar teorias experimentalmente que os teóricos podem atingir um ponto que ele chamou de filosofia. Seria um fim em que a física teórica seria permeada apenas por ideias, por mais complexas que sejam, sem nenhum questionamento ou intenção de questionar por parte dos experimentais, visto a enorme falta de capacidade.

*Polaroide: Antes do advento das câmeras digitais, os polaroides eram itens básicos das câmeras fotográficas da época (aquelas em que as fotos eram impressas na hora). Com o surgimento das câmeras digitais, os polaroides deixaram de ser comercializados em geral, porém os melhores continuaram em produção e inclusive em uso. Este seria outro destino para a física teórica: com o passar do tempo, apenas os realmente melhores, ou melhor dizendo, apenas os já influentes em assuntos chaves da física teórica iriam ter garantia de trabalho. Seria um destino que o próprio mercado de trabalho iria traçar.

*Química: Novamente segundo o Professor Andrei, este seria outro destino possível. A física teórica se tornaria uma área de pesquisa interdisciplinar, misturando-se a diversas outras áreas da ciência teórica, como biologia e a própria química.

Por fim, a palestra termina com a seguinte conclusão. Se você quer fazer pesquisa em matemática pura, não vá ao departamento de matemática, e sim ao de física. Se você quer fazer pesquisa em biologia, não vá ao departamento de biologia, e sim vá fazer física. Ou seja, a física hoje em dia vai muito além de bloquinhos e roldanas. A física está inserida em todas as áreas de conhecimento da ciência e da engenharia, e não somente em ciências exatas. Bom, espero ter contribuído um pouco, apenas tendo como objetivo narrar uma palestra que achei muito interessante. Futuramente se a palestra for divulgado em vídeo, colocarei o link aqui para todos.
Abraços!